News

Home News

Carbon nanotube powder breakthrough, approaching limit

new products

Latest News

August 7,2025.

Carbon nanotube powder breakthrough, approaching limit

Carbon nanotubes powder, as one of the strongest structural materials in theory, can achieve mechanical properties of hundreds of GPa level strength and TPa level modulus per single strand. However, the realization of such outstanding performance in ...

June 4,2025.

The 14th Shenzhen International Thermal and Heat Dissipation Materials and Equipment Exhibition (CIME2025)

The 14th Shenzhen International Thermal and Heat Dissipation Materials and Equipment Exhibition (CIME2025) will be held from June 4-6, 2025 at the Shenzhen International Convention and Exhibition Center. The exhibition area is 20000 square meters, wi...

May 29,2025.

Photothermal effect of anti-inflammatory and antioxidant properties Enhanced antibacterial hydrogel promotes infected wound healing

During the healing process of infectious wounds, bacterial infection, persistent oxidative stress, and long-term inflammation are the main obstacles. Developing a multifunctional wound dressing that can effectively eliminate bacteria, reduce oxidativ...

May 29,2025.

Ag2S nanodot based microneedle patch for postoperative melanoma recurrence and infectious trauma treatment

In the surgical treatment of malignant melanoma, incomplete tumor resection and extensive skin defects are the main reasons for high local recurrence rates and uncontrolled wound infections, leading to poor prognosis and prolonged patient recovery ti...

May 29,2025.

Light Stimulated Shuangluo gel for Photothermal Treatment of Cancer

Peptide substances have shown great potential in the field of biomaterials due to their high design flexibility, excellent biocompatibility, and degradability. Peptide based stimuli responsive biomaterials endow them with unique functions in drug del...

April 16,2025.

MXene regulates glycolysis for synergistic treatment of cancer

In recent years, treatment strategies targeting the unique metabolic characteristics of cancer cells, such as aerobic glycolysis, have gradually received attention. Among them, hunger therapy has shown potential therapeutic value by cutting off the g...

April 16,2025.

High air stability MXene biointerface thin film electrode

MXene exhibits excellent ion electron dual conductivity mechanism and has become a promising candidate material for biological interface electrodes. However, the exposed Ti atoms on the MXene layer are prone to oxidation in air, leading to severe deg...

April 16,2025.

Two dimensional tungsten based MXene material for hydrogen production by electrolysis of water

Electrolysis of water to produce hydrogen (HER) is the core technology for obtaining "green hydrogen", but existing precious metal catalysts (such as platinum) are expensive and difficult to apply on a large scale. Scientists are turning their attent...

January 9,2025.

The Chinese government supports the vigorous development of powder metallurgy enterprises

The powder metallurgy industry, as an important component of the new materials field, plays a crucial role in promoting the transformation and upgrading of China's manufacturing industry. Powder metallurgy technology, due to its unique process advant...

November 27,2024.

Rocket microneedle assisted deep drug delivery for combination therapy of melanoma

Melanoma is a highly invasive skin cancer, and its treatment faces challenges such as difficulty in penetrating the skin barrier with drugs and systemic side effects. As a unique transdermal drug delivery method, microneedles have many advantages suc...

Carbon nanotube powder breakthrough, approaching limit

August 7,2025.

Carbon nanotubes powder, as one of the strongest structural materials in theory, can achieve mechanical properties of hundreds of GPa level strength and TPa level modulus per single strand. However, the realization of such outstanding performance in macroscopic materials always faces the "scale paradox": the strength of macroscopic carbon nanotube fibers or structural components is much lower than the theoretical value of a single CNT, because the nanotubes that make up these structures generally have insufficient length, uneven arrangement, and structural defects, and the connection method often relies on weak shear forces. Although various strategies have been attempted to enhance connections through covalent bonding repair or energy beam welding, they all face bottlenecks such as structural damage, high costs, or complex operations that are difficult to engineer. Recently, Professor Wei Fei's team from Tsinghua University jointly proposed and experimentally verified a Van der Waals welding method based on TiO ₂ nanoparticles, which achieved almost non-destructive macroscopic CNT welding at normal pressure and room temperature for the first time. The joint strength is close to the theoretical limit of a single CNT, marking another key breakthrough in the "transition from experimental to engineering" of carbon nanomaterials.


This technology is based on the Fast Chemical Vapor Deposition Self Assembly (FCVDS) process, which can accurately deposit nano-sized TiO ₂ particles onto the overlapping area of CNT bundles in just a few seconds, serving as a "nano brazing material". Unlike traditional welding that relies on atomic diffusion or high-temperature covalent reconstruction, this method purely relies on van der Waals forces and interface friction to achieve connection, thus avoiding damage to the tube wall structure caused by high-energy beam irradiation or excited state generation. More importantly, by designing deposition parameters and particle size distribution reasonably, effective welding can be achieved with only about 1 wt% of "brazing material", maximizing the preservation of CNT's original low-density advantage. This lightweight welding method provides a practical and feasible engineering implementation path for carbon nanotubes in fields such as aerospace, military, and flexible structural materials that are extremely sensitive to comparative strength in the future.


This study not only proposes a new CNT welding technology that combines strength preservation, structural integrity, weight control, and operational feasibility, but also comprehensively demonstrates the strategy from mechanical mechanisms, parameter models, to engineering experiments. While achieving non-destructive amplification of the mechanical properties of carbon nanotubes, it provides key technical support for applications such as high-strength fiber materials, flexible devices, and extreme structural components. In the future, if this method can be linked with industrial grade CVD CNT macroscopic preparation technology, it is expected to promote the transition of high-strength carbon nanostructured materials from the laboratory to the industrial end, empowering the performance leap of the next generation of aerospace, defense composite materials and flexible structural devices.


SAT NANO is one of the best supplier of carbon nanotube powder in China, we can supply SWCNT, DWCNT and MWCNT powder and other customed carbon nanotube powder, if you have any enquiry, please feel free to contact us at admin@satnano.com

Leave a message Please click here for inquiry
Provide the right solution according to your needs,offer efficient service,leave a message for the product information and requirements you need,customize now!