Scanning electron microscope (SEM) is a key tool for modern scientific exploration of the microscopic world. It plays an irreplaceable role in scientific research and industrial applications by enabling us to gain insights into the microscopic structure of matter through high-resolution electronic imaging technology. SEM scans the surface of the sample with a high-energy electron beam to collect s...
Read More
Titanium dioxide has the characteristics of high chemical stability, non toxicity, and good photoelectric performance, especially rutile titanium dioxide has high surface activity, which is very suitable for battery material modification. Like polyethylene glycol, the introduction of titanium dioxide is also to compensate for the insufficient energy density and rate performance of lithium iron pho...
Read More
With the rapid development of modern industry and technology, different industries have increasingly high performance requirements for powder materials. In addition to having extremely low impurity content, fine particle size, and narrow particle size distribution, powder materials also need to have a certain particle morphology. Spherical powders have been widely used in high-end industries such ...
Read More
What are nanoparticles? Nanoparticles (NPs) are typically defined as granular materials with at least one dimension at the nanoscale (1-100 nm) in three-dimensional space. From the dimensions of structure and morphology, nanoparticles can be classified into zero dimensional nanomaterials (0D nanomaterials), corresponding to one-dimensional (1D) and two-dimensional (2D) nanomaterials. 0D nanopartic...
Read More
Why do nanoparticles aggregate? 1.Surface free energy driven mechanism Nanoparticles have a larger specific surface area and unsaturated surface atoms, leading to an increase in surface free energy. Multi particle contact can reduce the total surface area, release interfacial energy, and thus lower the system's free energy. This trend of energy minimization is the intrinsic thermodynamic driving f...
Read More
1.Characterization of particle size and distribution Dynamic Light Scattering (DLS): DLS is one of the most commonly used techniques for measuring the particle size and distribution of nanoparticles in suspensions. It calculates the hydrodynamic diameter of particles by measuring the time-dependent light scattering intensity fluctuations caused by Brownian motion of particles. DLS can also provide...
Read More